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INTRODUCTION

Aerial mapping of forest disturbances has 
contributed to monitoring efforts in the 
United States since aircraft were first used 

to detect wildfire and insect mortality after 
World War I. In the century since, routine 
aircraft patrols with field examinations have 
successfully documented disturbances with 
increasing effectiveness. There remain conspicuous 
discrepancies among States, jurisdictions, 
and forest types, however, and this is further 
complicated by shifting mapping methods over 
time (e.g., Housman and others 2018).

Satellite-based remote sensing provides a 
complementary approach for aerial surveys 
as it brings efficient, cross-jurisdictional 
standardization to change detection. Systematic 
observations from satellite data taken over months 
to decades provide substance for programmatic 
forest monitoring, and this approach gives us a 
rigorous understanding of status and change over 
time using the satellite data archive. 

Until recently, integration of satellite-based 
remote sensing with field and aircraft efforts was 
impeded by data processing constraints, given the 
large and unwieldy datasets involved. With the rise 
of cloud computing such as Google Earth Engine 
(hereafter referred to as EE), data access and image 
processing are no longer constraining (Gorelick and 
others 2017, Hanson and others 2013). Other game 
changers have been the opening of satellite data 
archives for free use (Wulder and others 2012) and 
the launch of new satellites with higher resolution 
than existed before. Imagery from the Sentinel-2 

satellites in particular has nine times more 
spatial detail than Landsat and about 600 times 
more detail than Moderate Resolution Imaging 
Spectroradiometer (MODIS) imagery. Mapping 
forest change at this more precise resolution 
gives insights into the pattern and texture of 
disturbances that are helpful for accurate mapping 
and interpretation. Despite these technological 
advances, causal attribution can still be challenging, 
so field observations are needed to resolve insect 
defoliation or when multiple causes contribute to 
tree stress or mortality. 

This chapter reports on the broad patterns of 
forest anomalies across the conterminous United 
States for 2020 as detected from remote sensing. 
A prior effort used the summer persistence of 
anomalies in 240-m MODIS imagery across 
this same extent (Norman and Christie 2020). 
Leveraging the computational power of EE, 
this current effort summarizes conditions over 
that same area using forested 10-m grid cells. As 
hexagons have been proposed as a standardized 
unit for forest reporting (Potter and others 
2016), we demonstrate how these precise gridded 
observations can be filtered and summarized into 
coarser reporting units.

METHODS
Imagery from the European Space Community’s 
Sentinel-2 satellites were accessed using EE 
to produce national maps of the Normalized 
Difference Vegetation Index (NDVI) for summer 
2019 and 2020. Data were corrected for surface 
reflectance and filtered for clouds. The NDVI 
captures canopy vegetation vigor and has well-
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understood limitations (Norman and Christie 
2020). Compared to some other vegetation-
sensitive indices, Sentinel-2’s NDVI relies on 
the 10-m resolution red and infrared bands—a 
resolution which approximates the footprint of 
a single large canopy tree. We used a maximum 
NDVI value compositing technique to select the 
best imagery available for a designated period of 
time, and this minimized the influence of clouds 
and shadows that lower NDVI (Spruce and 
others 2011). 

Growing season NDVI was defined as the 
maximum NDVI observed over a 2.5-month 
period for 2019 and 2020. For areas east of the 
100th meridian, the compositing period was May 
15 to July 31, which is generally the best season 
for detecting early spring defoliators and when 
summer NDVI reaches its phenological high in 
the East (Norman and others 2017). For the West, 
we used the highest NDVI between July 15 and 
September 30 to reduce the influence of variable 
spring timing and mountain snowpack. We 
acknowledge that local phenological factors and 
the timing of some disturbances before or after 
these dates could interfere with some mapping 
objectives, but for this national-scale effort, our 
primary objective is to have a transparent and 
standardized methodology. 

We calculated 1-year absolute change in 
summer NDVI (dNDVI) by comparing the 
2019 and 2020 maps. The 1-year baseline ensures 
that the detected changes are recent as it avoids 
persistent effects from prior years. A shortcoming 
of using the 1-year baseline is that in areas with 
sequential year disturbances such as year-on-year 

defoliation, the 2020 dNDVI may mischaracterize 
impacts when 2019 was also anomalous. A 1-year 
baseline provides the most clarity for industrially 
logged regions, as multiyear artifacts accumulate 
there and these obscure other disturbances 
(Norman and Christie 2020).

In EE, we distinguished likely forest from 
nonforest using the 2016 National Land Cover 
Database (NLCD) (https://www.mrlc.gov/). 
While the NLCD product is at 30-m resolution 
and its cover type designation is outdated 
where severe fire or logging activity occurred 
immediately prior to 2019, this was the best 
nationally consistent land cover source available. 

For our national overview, we used EE to 
summarize forest-only changes below a threshold 
of -0.1 NDVI, and we summarized these in 
hexagons of 834 km2. This nationwide NDVI 
departure threshold was chosen because declines 
that are less are more likely to have minor or 
ephemeral impacts to the canopy. Based on 
observations in the Eastern United States where 
thresholding is challenging due to the dominance 
of mixed deciduous cover, this threshold usually 
captures growing season canopy stress from 
moderate to severe fire and wind and insect 
defoliation, as well as tree mortality. This effort 
gave us approximately 9,810 hexagons for the 
conterminous United States with each having 
8.34 million 10-m Sentinel-2 grid cells. We 
calculated the percentage of each hexagon with 
forest and the percentage of forest cells departed 
at or below the specified threshold. For our finer 
scale assessment, we relied on the same 10-m 
Sentinel-2 NDVI change product and the same 
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NLCD forest mask. This seamless approach 
allowed us to visualize regional and fine-resolution 
patterns of departures efficiently using the 
HiForm.org script in EE.

RESULTS AND DISCUSSION
At the national scale, broadly coherent patterns 
of growing season change generally conform to 
ecological or climatological regions. The central 
and southern Interior West exhibit more NDVI 
departure than the northern Interior West or 
Pacific Northwest coast (fig. 6.1). Across the East, 
the Southeast Piedmont and Coastal Plain show 
more NDVI departure than most of the Northeast, 
but there are pockets of stronger departure such as 
in northern Michigan, northeastern New England, 
and southern Pennsylvania. There is additional 
variability among hexagons within each broad 
region. Together, these multistate and hexagon-
scale patterns suggest stress at the regional and 
landscape scale for 2020.

Even at this coarse hexagonal resolution, 
regional causes of disturbance can be inferred. In 
particular, the coherence of the Interior West’s 
summer NDVI departure and that of much 
of New England is generally consistent with 
the U.S. Drought Monitor for late September 
2020 (https://droughtmonitor.unl.edu/Maps/
MapArchive.aspx). The areas of moderate 
departure across the Southeast’s Coastal Plain 
and Piedmont region, Maine, and portions of 
the Pacific Northwest are consistent with where 
intensive forest harvesting occurs, which along 
with drought ranks as a leading cause of summer 
NDVI variability for the conterminous United 

States (Norman and Christie 2020, Norman and 
others 2016).

As the national hexagon map is assembled from 
10-m source imagery, we see local patterns and 
textures of disturbances by zooming in. With this 
precision, we also gain further insights into the 
local causes of forest NDVI departure.  
Figure 6.2 includes the U.S. Department of 
Energy Savannah River Site, and it shows 
prominent patterns of linear streaks, rectangular 
blocks (in dark blue indicating recovery and 
red indicating extreme decline), and separate 
amorphous areas (in light yellow indicating 
low NDVI change). The streaks were caused by 
spring 2020 tornadoes, and the blocky areas of 
disturbance and recovery are from recent logging. 
The yellow areas likely represent areas of low-
severity prescribed fire or thinning that had a 
minor effect on the overstory canopy. The extent, 
shape, edge attributes, and intensity or texture 
help us interpret these patterns, often with a 
high degree of certainty even when ancillary data 
such as storm tracks and treatment dates are 
not utilized. These ancillary datasets can serve a 
confirmational role, but the drop in NDVI can 
result from more than one cause, such as wildfire 
and beetles, beetles and logging, wind damage, 
and prescribed fire.

Situated in the northern Lower Peninsula of 
Michigan, figure 6.3 shows a large, amorphous 
area of moderately severe disturbance caused 
by Lymantria dispar dispar (formerly known as 
European gypsy moth) defoliation. This 2020 
outbreak was documented by field observations, 
and this map is particularly adept at showing 
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Figure 6.1—Percentage of 10-m forest grid cells within 834-km2 hexagons that were disturbed below a threshold Normalized Difference Vegetation 
Index (NDVI) departure of -0.11 from the 2019 to the 2020 growing seasons for the conterminous United States. Grey hexagons have little to no 
forest cover.

Percent disturbed 
10-m forest grid cells
■ 0.1–1.0
■ 1.1–2.5
■ 2.6–5.0
■ 5.1–9.0
■ 9.1–15.0
■ 15.1–25.0
■ 25.1–40.0
■ 40.1–60.0
■ 60.1–75.0
■ 75.1–100.0
■ Nonforest
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Figure 6.2—Forest disturbances near the U.S. Department of Energy Savannah River Site, SC. Areas 
in yellow to red show the severity of recent disturbances, while light blue shows forests with no change. 
Dark blue is recovery from earlier disturbances. 

Change in NDVI
■ <-37
■ -37– -34
■ -33– -30
■ -29– -26
■ -25– -22
■ -21– -19
■ -18– -16
■ -15– -13
■ -12– -10
■ -9– -7
■ -6– -4
■ -3–5
■ 6–10
■ 11–25
■ >25.0
■ Nonforest
■ Water
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Figure 6.3—Change in Normalized Difference Vegetation Index (NDVI) in northeastern Michigan. 
Areas in yellow to red show the severity of recent disturbances, while light blue shows forests with no 
change. Dark blue is recovery from earlier disturbances.

Change in NDVI
■ <-37
■ -37– -34
■ -33– -30
■ -29– -26
■ -25– -22
■ -21– -19
■ -18– -16
■ -15– -13
■ -12– -10
■ -9– -7
■ -6– -4
■ -3–5
■ 6–10
■ 11–25
■ >25.0
■ Nonforest
■ Water
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subtle differences in defoliation intensity. As 
recurrent gypsy moth defoliations can occur over 
multiple years, impact assessment may need to 
be calculated using a baseline year that had no 
defoliation as part of a local exploration process. 
Such multiyear impacts are difficult to accurately 
map as is gradational intensity without the benefit 
of remote sensing.

Just east of Portland, OR, and south of the 
Columbia River Gorge, figure 6.4 shows relatively 
few acres of late summer NDVI decline, but 
these are readily mapped using 10-m NDVI 
change imagery. The area of the September 2017 
Eagle Creek wildfire now in post-fire recovery is 
shown in dark blue at the top of the figure, while 
areas of local NDVI declines shown in yellow 
at the southern and eastern edge of that fire are 
likely from delayed mortality from insects. It is 
notable that there has been gradual migrating 
NDVI decline near these sites each year since the 
fire. Also note the extreme NDVI declines from 
logging near the western edge of the hexagon in 
purple that lie amid areas of NDVI recovery in 
dark blue. The co-occurrence of similarly shaped 
rectangular blocks of decline and recovery is 
indicative of industrial logging.

Figure 6.5 shows change in NDVI for a high 
elevation (8,000–12,000 feet) subalpine spruce-fir 
forest in the San Juan National Forest in Mineral 
County, CO. Both figure 6.1 and the status of the 
late summer 2020 U.S. Drought Monitor suggest 
that the primary cause of this broad NDVI 
departure is drought. This is particularly likely 
here because in 2020, most areas showing NDVI 
departure marginally fall under the definition 

of forest due to prior mortality. The June 2013 
West Fork Complex burned the eastern portion 
of the hexagon in figure 6.5, and while this area 
has had limited mapped insect activity recently, 
significant mortality occurred during the last 
decade. Inspecting these areas more closely in EE 
using background imagery, nearly all the NDVI 
departures in yellow and the majority of the 
NDVI departures in red on figure 6.5 are those 
areas of prior mortality. As drought-sensitive 
grass is not the intended target for mapping, a 
more recent and higher resolution forest mask 
would isolate recent tree impacts from nonwoody 
drought responses here.

Tools for Disturbance Assessment
With technological advances improving the 
accessibility of satellite data, analytical needs shift 
toward disturbance assessment. That is, detections 
may or may not be real disturbances, and when 
they are, analysts need to know exactly what 
caused them. In practical terms, attribution comes 
down to likelihoods based on the weight of the 
evidence available.

In many cases, the most likely cause of a 
disturbance is suggested by available ancillary 
datasets. Thanks to numerous independent 
governmental efforts, we generally know where 
drought, major storms, large wildfires, and 
extensive insect defoliations are occurring before 
their precise impacts are mapped (Norman 
and Christie 2020). Assessment refines the 
disturbance footprint, maps severity, and tracks 
the disturbance’s duration or recovery over time. 
Where disturbances appear unexpectedly, the 
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Figure 6.4—Change in Normalized Difference Vegetation Index (NDVI) east of Portland, OR. 
Mount Hood lies just outside this hexagon at lower right. Areas in yellow to red show the severity of 
recent disturbances, while light blue shows forests with no change. Dark blue is recovery from earlier 
disturbances.

Change in NDVI
■ <-37
■ -37– -34
■ -33– -30
■ -29– -26
■ -25– -22
■ -21– -19
■ -18– -16
■ -15– -13
■ -12– -10
■ -9– -7
■ -6– -4
■ -3–5
■ 6–10
■ 11–25
■ >25.0
■ Nonforest
■ Water
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Figure 6.5—Change in Normalized Difference Vegetation Index (NDVI) for a high-elevation (8,000–
12,000 feet) portion of the San Juan National Forest in Mineral County, CO. Areas in yellow to red 
show the severity of recent disturbances, while light blue shows forests with no change. Dark blue is 
recovery from earlier disturbances. 

Change in NDVI
■ <-37
■ -37– -34
■ -33– -30
■ -29– -26
■ -25– -22
■ -21– -19
■ -18– -16
■ -15– -13
■ -12– -10
■ -9– -7
■ -6– -4
■ -3–5
■ 6–10
■ 11–25
■ >25.0
■ Nonforest
■ Water
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spatial and temporal attributes of the disturbance 
become critical for attributing cause. 

The field of landscape ecology has devised 
numerous ways to characterize the spatial 
attributes of landscape features, and these are 
useful for characterizing the processes that 
give rise to them (Costanza and others 2019, 
Gustafson 1998). Critical attributes include 
extent, shape, edge, texture, and intensity. The 
precision of these measures is reduced by coarse-
resolution imagery such as MODIS, particularly 
in heterogeneous forests with diverse cover or 
fragmented landscapes.

Fine-resolution imagery is more likely to reveal 
these disturbance attributes accurately, but texture, 
shape, edge, and intensity also reflect vegetation 
susceptibility. In mixed stands, disturbances 
that preferentially affect one species can create 
spotty or dispersed textures, while fragmented 
land use and a homogenous forest type can 
create aggregations. The underlying patterns of 
susceptibility from exposure or host vulnerability 
can result in shapes that would not otherwise 
occur, which means that pattern interpretation 
needs to reflect both this underlying condition 
and the diagnostic characteristics of a particular 
disturbance. Situational context is key.

The behavior of remotely sensed measures 
over time can also be useful for attributing cause. 
Algorithms such as LCMS (Landscape Change 
Monitoring System), LandTrendr (Landsat-based 
detection of Trends in Disturbance and Recovery), 
and VerDET (Vegetation Regeneration and 
Disturbance Estimates) evaluate multiyear 
responses using time series data, and these 

temporal patterns are often indicative of general 
classes of disturbances (Cohen and others 2018, 
Hughes and others 2017, Kennedy and others 
2018, Schroeder and others 2017). For near-
real-time evaluations, weekly streaming MODIS 
satellite data are particularly adept at documenting 
onset timing, progression, and duration in 
particular (Hargrove and others 2009). Recurrent 
observations within and across growing seasons at 
any grid resolution can help distinguish ephemeral 
defoliation from actual tree mortality (Norman 
and Christie 2020). 

Indicators
Most indicators in common use by remote sensing 
analysts are informal, but a more standardized 
approach is critical for communication and 
machine learning approaches that could someday 
support attribution efforts. As shown below, 
four spatial indicators include extent, shape, 
edge character, and texture and intensity. Three 
temporal indicators are the seasonal onset date, 
the speed of development or weekly progression, 
and the duration of the impact. These indicators 
can differ among disturbances (as shown in tables 
6.1 and 6.2):  

1.	Extent (local, landscape, regional)—Extensive 
disturbances often suggest a weather or 
phenological cause, although the manifestation 
of the anomaly is often confined to susceptible 
vegetation types. Extensive disturbances result 
from drought, hurricanes, spring freezes, and 
derechos, but delayed spring green-up, an early 
leaf senescence, and variation in snowpack can 
create similarly broad-scale anomalies at certain 
times of year.
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Table 6.1—Common spatial indicators for assessing the causes of Normalized Difference Vegetation Index (NDVI) decline that link pattern with 
process

Cause Extent Shape Edge Texture and intensity

Drought Broadly regional extending 
across multiple counties or 
States

Amorphous Gradational, usually over tens 
to hundreds of kilometers

Depends on the sensitivity of vegetation 
types to drought stress 

Tornadoes Local to landscape depending 
on storm track 

Strongly linear patch, in a 
consistent direction as storm 
tracks

Moderately sharp, with steep 
wind speed gradients over 
hundreds of meters

Generally highly intense along the midline 
with lateral reductions with reduced wind 
speed

Hurricanes Multicounty or multistate, 
particularly from more intense 
storms

Broad impacts often with 
narrowing breadth inland as 
wind speeds fall

Generally decreasing inland; 
sharp-edged only with 
differences in cover type, such 
as at flood plains or harvest 
boundaries

Valleys show strong post-storm decline 
from flooding; damage intensity varies by 
hardwood/deciduous type

Freezes Multicounty to regional 
consistent with extreme low 
temperatures 

Broadly evident but locally 
constrained by elevation and 
topographic position

Gradational regionally but 
locally abrupt with cover, 
topography or the freeze line 

Usually low intensity; textural impacts vary 
with cover type and terrain

Downbursts /hail Local to landscape Often oblong and directionally 
consistent with storm tracks

Gradational to fuzzy except 
where core impacts persist 

Usually has an epicenter of concentrated 
impact surrounded by lower impact areas

Defoliating insects Local to landscape Amorphous Gradational Often with areas of concentrated high 
impact in areas of modest decline; rash-like

Bark beetles Local to landscape Gap to patch sized; clustered Sharp or gradual Can show a leading edge of progressive 
migrating decline or highly textured 
variation; sometimes rash-like

Diseases/
pathogens

Local Spotty; constrained by 
affected host distribution

Sharp or gradational Depends on the density of the affected host 
and size of the infestation

Prescribed fire Local, confined to 
management units

Usually limited to a distinct 
management unit or confined 
by roads or streams

Usually gradational, often with 
minimal detectability; severe 
patches are often sharp-edged 

Variable; usually of lower intensity with 
fewer discrete patches than area wildfires

Wildfire Local to landscape High-intensity patch shape 
often conforms to topography

Usually soft or gradational due 
to operational backfires or 
managed edges

Variable severity is common with high-
intensity patches conforming to topography

Thinning Local, confined to a 
management unit

Patchy Gradual to sharp depending on 
the intensity

Strong fine-scale textural variation; 
sometimes rash-like

Logging Local, confined to a 
management unit

Patchy Very sharp where canopy 
patches are removed

Generally extreme with variation from 
exposed soil or persistent slash

Landslides Highly localized Patchy and linear, especially 
with downslope flow 

Very sharp Depends on size and severity; extreme 
where bare rock or soil

Flooding Occurrence is generally 
confined to waterways or 
valley bottoms

Linear or branching along 
valley networks

Generally sharp, conforming 
with the topography

Microtopography affects depth and 
overstory canopy affects the apparent 
intensity
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Table 6.2—Common temporal indicators for assessing the cause of Normalized Difference Vegetation Index (NDVI) decline that 
link pattern with process

Cause Onset date Development speed Duration

Drought Regionally specific; sometimes only evident 
during drought-sensitive seasons; affects 
snowpack and the timing of spring and fall 
phenology 

Usually gradual; behavior is sensitive 
to phenology, particularly that of 
grass

Usually seasonal; duration is often 
consistent with meteorological 
drought, but mortality can create a 
multiyear legacy 

Tornadoes Spring or early summer when these storms occur Rapid Multiyear with mortality

Hurricanes Late summer or fall when these storms occur Rapid Seasonal to multiyear

Frost Mid- to late spring when this weather occurs; 
in spring, often manifest as a delayed or slowed 
spring; in fall manifest as early senescence

Rapid Weeks; severe frost damage can 
extend through the entire growing 
season

Downbursts/hail Anytime during the growing season; usually 
spring or summer

Rapid When severe, effects can persist 
through the remaining growing 
season

Defoliating insects Region and defoliator-dependent; early spring 
through mid-summer

Gradual, over a period of weeks When severe, effects can persist 
through the remaining growing 
season

Bark beetles Region- and insect-specific; mortality can be 
year-round in the Southeast 

Rapid to gradual over a period of 
weeks

Multiyear with mortality

Diseases/pathogens Recognition can depend on the host tree’s 
seasonal leaf phenology

Often gradual; the outbreak can 
evolve over several growing seasons

Multiyear with mortality

Prescribed fire During the region’s prescribed fire season; winter 
prescribed fires may not emerge until spring

Rapid Multiyear; often only visible soon 
after the event

Wildfire Normally emerge during the region’s wildfire 
season

Rapid Multiyear with mortality

Thinning Anytime Rapid to gradual over a period of 
weeks to months

Multiyear with mortality

Logging Anytime Rapid to gradual over a period of 
weeks to months

Multiyear with mortality

Landslides Anytime; usually triggered by a heavy rain event Usually rapid unless actively 
expanding

Multiyear with mortality

Flooding Anytime; usually triggered by a heavy rain event Rapid Weeks to months
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2.	Shape (amorphous, linear, blocky, conformal)—
Shape is particularly useful for isolating 
intense weather events such as tornadoes and 
downbursts. At high resolution, shape often 
depends on the susceptibility of the available 
vegetation or land cover type as much as the 
physical attributes of the disturbance itself, 
and this is particularly complicated in mixed 
deciduous-evergreen forests. 

3.	Edge (sharp, gradual, conformal)—Natural 
disturbances such as wind, hail, and insect 
defoliations often have gradational edges 
because the stress grades naturally, but severe 
fire patches can be as abruptly edged as clearcut 
logging units. Fragmented landscapes often 
have conformal disturbance edges due to how 
different cover types respond.

4.	Texture and intensity (uniform, patchy, rash-
like)—These attributes reflect both the behavior 
of the disturbance and the vulnerability of the 
vegetation involved. In heterogenous mixed 
evergreen-deciduous forests, textural variation 
in intensity can reflect topography and host 
density. In homogenous forests, it can reveal 
unfolding disturbance processes, such as local 
epicenters of spreading beetle mortality. 

5.	Onset date (winter, spring, summer, fall)—
Onset date provides important evidence when 
analysts know when different disturbances 
emerge locally. Many insect defoliators are 
diagnosed by when they erupt. Importantly, the 
canopy effects of some disturbances that occur 
during the fall, winter, or early spring may not be 
detected by remote sensing until leaves emerge, 

and this delay in manifestation can limit the 
usefulness of onset date. 

6.	Speed of development (rapid, gradual)—Most 
severe forest disturbances occur suddenly, but 
some evolve over the course of weeks, such 
as progressive pine beetle mortality or the 
gradual logging of a unit. After windstorms, the 
manifestation of a disturbance can be slow to 
show up even when the event is rapid, possibly 
because downed canopies take time to brown.

7.	Duration (weeks, season, multiyear)—
Disturbance duration is particularly useful in 
eastern hardwood forests for distinguishing 
among ephemeral defoliations or minor 
damage from hail, wind, or frost effects, and 
tree mortality. In some cases, severe canopy 
damage can occur that is only detectable for a 
few weeks due to compensatory growth, and 
this limitation may only be overcome through 
field examinations.

The grid resolution of remote sensing products 
can affect how clearly these first four indicators—
extent, shape, edge, and texture and intensity—can 
be recognized. Meanwhile, the temporal frequency 
of imagery can affect how precisely we can resolve 
onset date, speed of development, and duration. 
As a result, daily coarse-resolution imagery such 
as 250-m MODIS may best document temporal 
behavior, while high-resolution imagery that is 
10 m or less can most reliably show shape, edge, 
and textural variation. A precise understanding 
of spatial pattern is most important in areas with 
complex terrain, cover types, or mixed species as 
that helps isolate what caused NDVI departures. 
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High-resolution imagery can even be important 
for attributing cause to extensive disturbances 
such as drought, given the different sensitivities of 
cover types (Norman and others 2016).  

CONCLUSIONS
Cloud-based remote sensing provides forest 
monitoring solutions for near-real-time 
tracking purposes and as part of a broader forest 
monitoring program. The flexibility of cloud-based 
analyses allows efficient use of high-resolution 
imagery, such as Sentinel-2, for national-scale 
summary efforts while retaining the fine spatial 
resolution needed to effectively attribute cause. 
At 10 m, small disturbances that involve just a 
few trees are often detectable. This use of fine-
resolution imagery as the foundation for national 
assessments efficiently satisfies the local demand 
for precision and accuracy and the landscape, 
regional, and national need for context and 
generalization, all using a common indicator—
change in growing season NDVI at 10 m. 

The persistent challenge of remote sensing for 
landscape monitoring is causal assessment. That 
is, when the purpose of monitoring is to resolve 
impacts to a known disturbance, the cause is 
usually established from the start, but when the 
objective is to systematically track forests more 
broadly, attribution can be difficult. Our use of a 
single remote sensing measure reflects the need 
to capture vegetation dynamics broadly, and this 
includes disturbance recognition, attribution, 
quantification of impacts, and recovery. 

The science of disturbance attribution can 
be advanced through use of a standard set of 
spatial and temporal indicators, such as those 
shown on tables 6.1 and 6.2. Yet without use of 
ancillary datasets and aerial or field confirmation, 
such indicators can only shift the likelihood of 
different causes, as their attributes overlap. For 
confirmation of the cause of an NDVI departure 
observed from remote sensing, storm, fire, and 
management activity datasets are useful. Field 
observations are sometimes also critical, such as 
with the need to resolve which defoliating insect 
is responsible when multiple species are possible. 
For precise characterization of disturbance 
impacts, aerial surveys and field observations are 
generally required. Local expertise is, therefore, a 
critical part of monitoring, and advances in remote 
sensing are best used in support of an integrated 
monitoring program.
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